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Abstract

This paper describes a solution to the problem caused by the TCP
64-kilobyte window limitation. This limitation restricts the through-
put that TCP can get over network paths for which the product of
bandwidth and end-to-end delay is greater than 64 kilobytes. The
solution, which resides wholly at the application level, uses multiple
TCP connections in parallel to increase the total effective window size.
The role of the Research Internet Gateways (RIGs) in the testing of
the solution is discussed.

1 Introduction

The idea for mftp grew out of a desire to improve throughput for
file transfers by making better use of available bandwidth. Mftp is a
file transfer utility based in large part upon the common UNIX pro-
gram ftp (the “m” has no literal meaning itself; it is only meant to
suggest the use of mulliple connections). Ftp implements the Inter-
net standard File Transfer Protocol (FTP). The essential difference
between mftp and ftp is that mftp allows the user to specify an ar-
bitrary number of data-carrying logical “connections,” across which



the data are evenly distributed, whereas ftp supports only one (per
the FTP specification [1]). Why this makes a difference is an issue
of some subtlety, which hopefully is made clear by what follows. The
version of ftp which was used as the basis for the implementation of
mftp came from the 4.3 BSD (Berkeley Software Distribution) UNIX
system. It was a natural choice because of the authors’ familiarity
with the Berkeley network programming paradigm, and because it is
free from licensing restrictions.

2 The TCP Protocol

Mftp is meant to be useful in environments where file transfers are be-
ing performed over networks which exhibit a (relatively) high product
of bandwidth (maximum number of bits per second) times propaga-
tion delay (the time it takes for a bit to traverse the network from
source to destination). The real culprit in such cases is the Internet
Transmission Control Protocol (TCP), which defines and manages the
aforementioned logical connections and ensures the reliable delivery
(i.e. in order, and without loss or duplication) of data across TCP/IP
networks. TCP implements what is known as a sliding window pro-
tocol. Such a protocol retains a buffer of data (the “window”) which
partitions the data space of the file into 3 disjoint sections. Ahead
of the window is data which has yet to be sent. Inside the window
is data which has been sent, but for which receipt has not yet been
acknowledged by the receiver. Each byte of data sent by TCP has
a unique sequence number, and must be buffered by the sender for
possible retransmission until an acknowledgement of its receipt has
been returned. Behind the window is data which has been sent and
acknowledged, and therefore need no longer be saved by the sender.
As data are sent and acknowledged, the window “slides” forward. Its
size is not fixed, but may shrink and expand during a session, up to
a fixed (usually per-host) maximum. This maximum size is bounded
by 64 kilobytes. In other words, no TCP window may be set, or grow
larger than 64 kilobytes. This upper bound is determined by the TCP
protocol itself, which allocates only 16 bits in its packet header to hold
the size of the window.



3 The Problem

The relationship between the window size and bandwidth-delay prod-
uct (which we’ll abbreviate BDP) is quite direct. The BDP gives the
theoretical maximum number of bits (or bytes, if you wish to think of
it that way) which may be in transit on the network between source
and destination. In order to optimize network utilization and through-
put, we wish to keep as much of the “pipe” filled as possible at any
time. However, by definition, all of these bytes which are in transit
must be held inside the sender’s TCP window. It is when the BDP of
a network path exceeds 64 Kb that we have a problem. In this case
there is capacity in the network which is effectively being ignored by
the protocol. From a more practical angle, if the sender can transmit
into the network enough data to fill up its window before an acknowl-
edgment comes back from the receiver (that is, the sender is forced
to stop and wait for acknowledgment because its buffer is full), then
time has been wasted in which bytes might have been sent. Ideally
then, the window size for a TCP connection should be set no smaller
than the BDP of the path followed by the connection. !

A prime example of a network path whose BDP exceeds the TCP
64 Kb limit is a satellite-based T1 circuit. The T1 offers roughly
1.5 Megabits/second of bandwidth, and the propagation delay, con-
strained by the speed of light, is on the order of half a second (quite a
long time from a network point of view). The BDP for such a serial cir-
cuit is on the order of 100 Kb. Even in today’s terrestrial T1 networks
(BDP for a circuit that crosses the continental US is on the order of
15 Kb) time and bandwidth are being lost because most vendors set
window sizes to 4 or 8 Kb by default. Perhaps a more compelling
example is that of a T3 circuit (45 Mbit/sec) that stretches from the
east to the west coast of the continental US, which has a BDP of
roughly 450 Kb. This type of service has recently become a reality in
the Internet, with gigabit per second wide-area networking attracting
a great deal of interest. It is for these reasons that a solution to this
problem is so important now.

'In current implementations, window sizes are “hardwired” into operating systems, so
that they’re the same for all TCP connections on that host. Although some systems allow
appropriately programmed applications to set window sizes on a per-connection basis,
there is currently no way to discover a path BDP dynamically, and there’s no guarantee
that it will not change in mid-session as the result of the path being rerouted.



4 Potential Solutions

Replacing TCP with another protocol is not currently an acceptable
option for our purposes. Then, obviously, we must find a way to
increase the window size available to TCP. A fairly straightforward
approach that has been proposed in the Internet community and im-
plemented by a few vendors is to add an option (a sort of trailer) to
the TCP packet header which will store a multiplier for the window
size field. This means that the window size given in the main part of
the header will be multiplied by the value in the option field to find
the actual effective window size [2,3]. This is usually referred to as
the “window scale option,” and has several disadvantages, all related
to increased complexity.

First, it requires a change to the TCP specification [4], and there-
fore to a multitude of vendor implementations. Although this is not
expected to cause a loss of interoperability, nevertheless it may be a
long time before one can expect to take full advantage of the enhance-
ment in largely heterogeneous network environments. Additionally,
the enormous increase in possible window size causes a break-down
of other aspects of protocol dynamics, specifically the sequence num-
bering scheme. The original decision to allow for 32 bits of sequence
space was no doubt based on calculations which depended on an up-
per bound on window size of 64 kilobytes. Because the window scale
option allows the window to grow much greater than 64 Kb, the 32-
bit sequence space is rendered insufficient to ensure the uniqueness
of sequence numbers among outstanding data segments. Thus, a new
“pseudo-protocol” (based on timestamps) has been proposed to rectify
this problem and restore the stability of TCP. Another negative side-
effect of using a very large window is the potential necessity for equally
large retransmissions. When a segment gets lost in transit, often much
of the window needs to be retransmitted. Thus, another new “pseudo-
protocol” has been proposed to allow selective acknowledgment, i.e.,
the ability for the receiver to inform the sender of out-of-order seg-
ments which were received, so that the sender need only retransmit
the one or more segments that were actually lost. These things all add
complexity not only to the protocol specifications, but certainly also
to their implementations. Usually these implementations end up re-
siding in operating system kernels, making operating system software
harder to maintain, and problems harder to diagnose.
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The approach that was chosen at NAS is to move the solution up
above TCP to the level of application programs (specifically ftp). The
mftp application opens (via the Berkeley sockets interface) multiple
TCP connections for data transfer, and distributes the data equally
among them. The primary reason for this choice was simplicity and
ease of implementation. Keeping the modifications away from the
operating system kernel and away from the TCP protocol itself allowed
a very simple and flexible solution to be developed that was easily
ported to many different operating system platforms. By its nature
it avoids all of the difficulties to which the above-mentioned approach
is subject. The disadvantage of this solution is that its benefits are
not available to other programs which use the TCP transport service.
However, FTP is the application that interested us, and given that it
exists in “user space,” the algorithm can be patched into other codes
with relative ease.

5 Implementation Details

It should be emphasized that mftp runs as a single process which
manages multiple connections. It does not fork off a child process for
each connection, as do some other applications which have need of
more than one connection.

Mftp increases the effective window size of a file transfer by using
multiple instances of TCP (multiple windows) in parallel. Thus the
new effective window size is n times the window size that the individual
TCP connections are using, if there are n such connections in use. This
scheme shifts part of what would otherwise be TCP’s responsibility —
the need for the pieces of the file to be put together in the right order
at the remote end of the transfer — onto the application program. 2
Mftp incorporates the following algorithm to perform this function:
the n connections are visited by the program in a round-robin fashion
for writing data (on the sending side) or reading data (on the receiving
side). If it is possible to do so, the program will read or write one block
of data (normally equivalent to one packet) from/to each connection
in turn. If it is not possible, then mftp will skip over that connection

2Note that this problem is not nearly as hard as the ordered reassembly function that
TCP performs. The fact that each individual TCP connection returns an in-order data
stream takes a great load off of mftp’s reassembly algorithm.



and move on to the next one (not possible means, on the sending
side, that buffers are full and can accept no more data at that time,
and on the receiving side, that buffers are empty because no data has
been received from the network since the last time this connection was
read from). It should be easy to see that an arbitrary connection is
responsible for the transmission of file blocks whose positions in the
sequential file space differ by n. For example, connection number 2 will
transfer blocks whose indices are 2, 24+ n, 24+2n, 243n, etc. Mftp keeps
a record for each connection which includes its current position in the
file space. Once a connection finishes reading/writing an entire block
at some position, it increments this file pointer by n blocks. Thus the
file regains its proper order on the remote side, even if connections
are randomly skipped over in the round-robin process as a result of
packet loss in the network.

6 Verification

The mftp concept was subjected to a thorough battery of tests in the
NAS Research Internet Gateway (RIG) wide-area testbed. The goals
of these experiments were:

1. To determine the effectiveness of using multiple transport con-
nections per data transfer to utilize bandwidth resources which
would otherwise be lost in a “long fat network” (high BDP) en-
vironment because of the window size limitation of TCP.

2. To compare the effectiveness of the above scheme (multiple trans-
port connections with relatively small window sizes) to the use of
a single connection with a relatively large window for achieving
the same goal.

3. To determine the effectiveness of “type-of-service” routing in en-
hancing the utility of the scheme listed in 1. Specifically, to
compare the performance obtained by sending acknowledgments
via the same (high BDP) path as the data to that obtained by
sending acknowledgments via a separate, comparatively low de-
lay, out-of-band path.

The RIG testbed is pictured in Figure 1. The RIGs are experi-
mental prototype IP routers built by Proteon, Inc. under a DARPA
contract. They were intended to be used by DARPA as the basis for a



high-performance Defense Research Internet, for networking research,
as opposed to carrying production traffic. The NAS RIG testbed
served a similar purpose [5]. A RIG was installed at each of four
NASA centers: Ames (Moffett Field, CA), Langley (Hampton, VA),
Lewis (Cleveland, OH), and Marshall (Huntsville, AL). They were
joined in a circular topology, with each pair connected by two circuits
in parallel: a T1 satellite pipe (the thicker line) and a 56 Kbps terres-
trial line. At each NASA center were one or two Sun workstations on
an ethernet (which is denoted by MPT, for Multi-port Transceiver).
All workstations were running SunOS 4.0 or higher, including slow-
start TCP. Each of the 3 RIGs that were remote from Ames had an
out-of-band console access connection through the X.25-based NASA
Packet Switching System (NPSS).

°® o
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The basic paradigm for the experiments was a single file transfer
between two endpoints separated by one or more serial “hops” through
the RIG routers. All data-carrying packets, in all cases, passed over
the satellite circuits. In the type-of-service-routed cases only, acknowl-
edgement packets were returned via the low delay terrestial 56 Kbps
circuit. Throughput measurements were taken directly from the out-



put of mftp, which gives a short report at the end of each transfer.
Further measurements were taken in the form of packet traces using a
program called tepdump. The traces allowed us to visualize the behav-
ior of TCP by charting the number of packets sent and acknowledged
as a function of time.

Experimental (input) variables and their values were:

e Number of connections: 1, 4, 8, 12, 14, 16, 18, 20, 23, 26, and 31
e TCP send/receive window size: 2, 4, 8, 16, 31, and 50 Kbytes

e End-to-end delay (measured in satellite “hops”): 1 and 2 hops,
and 1 hop with type-of-service routing

o Transfer file size (fixed): 11.3 Mbytes

Two separate trials worth of data were collected for almost all pos-
sible combinations of the above variables. The ones omitted were ones
which caused a problem which was not directly relevant to our test-
ing activities (e.g., using 31 connections with 31 Kb windows caused
the end hosts to freeze up due to exhaustion of network memory).
For each stage of the experiment, the window size and delay variables
were held constant. A shell script ran each stage mostly independent
of human supervision (with the exception of host freeze-ups, router
crashes, and the like). The script performed the following actions for
each value of the connections variable:

1. Spawn off a tepdump process on the other local workstation. This
process monitored TCP activity on that LAN.

2. Initiate an mftp session to the remote machine, and set the num-
ber of connections

3. Use the (m)ftp put command to transfer an 11.3 Mb text file into
/dev /null

4. Save the result line from mftp, which reports the time and through-
put for the transfer, into a file

5. Kill the tepdump process.



7 Results

Our results showed the following:

1. Throughput increases almost linearly in the number of connec-
tions used as long as the total effective window size (TEWS) 3
is less than the bandwidth-delay product. This can be observed
in the behavior of the graphs in Figure 2 for small numbers of
connections and particularly for small window sizes. The erratic
behavior exhibited at higher TEWS values will be explored be-
low. Note that the graph slopes increase with window size, as
would be expected (consider a slice of the graph taken at a fixed
number of connections).

Figure 2: 1 satellite hop, per w ndow size
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2. Throughput values are similar whether few large windows are
used or many small ones, if the TEWS is the same. Compare
the data points for 1 connection at 31 Kb, 4 connections at 8
Kb, 8 connections at 4 Kb, and 16 connections at 2 Kb in Figure
2.

3The configured individual window size times the number of windows (connections).



3. The use of type-of-service routing as in Goal 3 gives a significant
throughput benefit over the “normal” case (compare the slopes of
the graphs in Figure 2 to those in Figure 3). In this case, type-of-
service routing also allowed us to completely fill the bandwidth
of a single satellite T1 hop (which appears as the “ceiling” in
Figure 3). The fact that we failed to do so in Figure 2 is a
manifestation of the problem described below.

Figure 3: 1 hop, type-of-service routing, per w ndow size
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It is not at all clear exactly what was causing the erratic behavior.
According to the tcpdump data for the one-hop case, 4 erratic effects
begin to appear at well under the BDP. In fact, minor fluctuations
occur even at very low TEWS values. It is notable that such behavior
is virtually non-existent in all of the type-of-service routed cases (c.f.
Figures 4 and 5). Graphically, the anomolies appear as tall spikes and
deep valleys.

“In Figures 4, 5, 7 and 9, the “sent” graph shows the number of bytes transmitted or
retransmitted since the last point on the graph. The “acked” graph shows the number of
bytes newly acknowledged since the last point on the graph.
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The most severe are valleys lasting on the order of 10-30 seconds, in
which the total throughput drops to virtually zero. Close examination
of these long blackouts reveals that they are caused by retransmission
of a single packet sometimes 4 or 5 times before it is acknowledged.
Congestion cannot be to blame because there are no (or very few)
other packets flowing.® A most unusual aspect of this problem is that
it seems not to be a “per-connection” phenomenon. When it happens,
all, or almost all, of the connections are affected simultaneously. Fur-
thermore, the problem appears to be router-interface-related. When
ACKs were sent via a different interface, as in the type-of-service
routed cases, these effects were totally absent.

Another unusual effect that we noted in the data concerns the
results taken in the two-satellite-hop case. Looking strictly at the
throughput numbers taken from mftp, there appears to be an ar-
tificially low ceiling governing the possible throughput over such a
network. At first glance this may seem reasonable, since the end-to-
end delay is twice that of the former cases. However, many of the
data points in Figure 6 represent more than enough window space to
cover the BDP of this network path (which is roughly 210 Kbytes).
Therefore we should see numbers approaching the bandwidth of the
network path (1.344 Mbps), as in the one-hop case. It is notable that
the erratic effects seen in the one-hop case appear to be absent here,
however if we look at the fcpdump graphs, we see that similar be-
havior is indeed there. It is not as random, nor as drastic, but it is
more consistent (Figure 7 is a typical example). Most of the two-hop
tepdump graphs show two or three “blackouts” of the sort described
above. Many also show throughput petering out significantly near the
end of the transfer, sometimes reducing to less than 25% for the last
full one third of the duration of the transfer.

In further support of this, there appears to be no relationship between the intensity
of erratic behavior and the number of ICMP source quench messages sent (usually zero).

12



Kbyt es/ sec

Bytes

160

140

120

100

80

60

40

20

500000

450000

400000

350000

300000

250000

200000

150000

100000

50000

Figure 6: 2 satellite hops,

per wi ndow si ze

10 15 20 25 30 35
Connecti ons
Figure 7: 14 conn, 16kb win, 2 hop (tcpdunp)
T T T T T T
‘sent’ ——
"acked’ ——- |
250 400

Tine (sec)

13




Kbyt es/ sec

After the wide-area testbed activities were completed, we per-
formed additional “control” experiments in the Long Haul Commu-
nications Lab at the NAS so we would have some comparison data.
The lab setup was the same as “half” of the wide-area testbed, i.e.,
two routers, each with an ethernet and hosts, connected by a serial
line. The satellite T1 was replaced by a circuit simulator with a delay
control capability. Two new data sets were taken from this testbed,
corresponding to the use of RIGs vs. Wellfleet FN routers. The re-
sults reveal that the problem is being caused by a bug in the RIGs
themselves. The RIGs performed the same in the lab as they had in
the wide-area testbed, but the Wellfleet routers did not exhibit the
erratic behavior. The graphs of the Wellfleet performance are shown
in Figure 8 (c.f. Figure 2) and Figure 9 (c.f. Figure 4, and note the
difference in time duration). The Wellfleet data also reconfirmed our
previous observation that the system as a whole is less stable at higher
TEWS values. Throughput numbers recorded for high TEWS values
across multiple trials were usually different, while for low TEWS val-
ues they were often identical. This fact is reflected to some extent
in the small perturbations at the top of Figure 8. The cause of this
behavior could be the subject of further investigation.

Figure 8 1 Hop, Wellfleet, per w ndow size
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Figure 9: 18 conn, 16kb win, 1 hop, Wellfleet (tcpdunp)
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8 Conclusion

The use of multiple TCP connections in parallel has been shown to be
a successful solution to the problem of getting reasonable throughput
over high bandwidth-delay product networks. Although it is not a
truly general solution, it is highly portable (because it eschews any
modification of protocols or operating systems) and will satisfy, in
the short term, the needs of the majority of those TCP/IP users who
are afflicted by the window limitation. Furthermore, type-of-service
routing, as used in this case, has been shown to be an effective way to
boost performance using a relatively small window. Less window space
is needed because the decrease in round-trip delay made possible by
sending acknowledgements via a low-delay path keeps the bandwidth-
delay product small. 6.

5Note that, while the savings in host memory are scarcely reason enough to design a
network this way, there are in fact other very good reasons for doing so (see [6]), and so
one might as well take advantage of the situation.
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